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THEORETICAL DESCRIPTION OF THE PHENOMENON OF
LOSS OF FLUIDITY IN POLYMER LIQUIDS SUBJECTED TO
INTENSIVE DEFORMATION

A, 1, Leonov, £. Kh, Lipkina, UDC 532.5:532.135
and A, N, Prokunin

Polymer liquids display a number of properties characteristic of solids: slippage along the
wall, the appearance of cracks in the material during flow, brittle fracture under tension, ete,
The combination of these phenomena encountered in the flow of polymers through capillaries,
accompanied by a number of other effects (oscillations and waves on the surface of a jel emerg~
ing from a capillary, crystallization of polymers in a capillary, ete.), has been referred to in
the literature as "destruction of melt,” The bibliography devoted to this question, which is im-
portant for many polymer-processing methods, is very extensive (see, for example, [1]). The
behavior of polymer liquids has been observed recently for melts of polymers with a narrow
molecular~-weight distribution (MWD) (2, 3] for conventional types of deformation, In [4] the
hardening effect was studied for the case of the extraction of polyoxyethylene from a tank by
means of a rotating drum, The length of the liquid jets so obtained was as much as half a
meter, In the present study we propose a theoretical description of the above-mentioned ef-
fects for two of the situations most often found in practice: simple shear and simple tension.

§1. Atheoreticaldeseription of the phenomenon of loss of fluidity in polymer liquids and their transition
to a highly elastic state will be considered in the simplest three-constant nonlinear model of an elastoplastic
medium of Maxwellian type, proposed in [5],

6 = —pd -+ 2CW, = 2C-1V, (W; = oW/l (1.1)
Cv —Ce —eC + 2Ce,(C) -= O, spe - 0, det € == 1: (1.2)
ey = (2 (D)exp{~(BuyWHEC —8T/3)W,, — (€1 — 8 I3 Wl 1.3)
Iy == spC. 0, o= spC-t, W= pof(T, I 1), 2W, = W, I,) — W(I,. 1) (1.4)
A -y . hiJ . v »
D == ”“’““““:s;h*'(r, exp {‘— %Wj (I, — DWW, o= WWo ) - 2(0F—3LL)W, W, --2(15 = 3T )W, W. ., (L.5)

where C° = {9/t + v8/8x)C + wC —Caw,

Here we give the rheological equations of the model (1.1)-(1,3) for an incompressible liquid in a Carte~
siancoordinate system; ¢ is the stress tensor; p is the isotropic pressure; e is the tensor of deformation rates;
w is the vortex tensor; the symmetric positive~definite tensor C represents the elastic deformation (Finger
measure) accumulated during the motion of the elastic liquid; ep is the tensor of the irreversible rate of de-
formation; 6 is the unit tensor; I, I, are independent variants of the tensor C; fis the specific free energy;

Wis the elastic potential; D is the dissipation function; cV is the Jaumann derivative of the tensor C with
respect to time; and T is the temperature,
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The connection between the stress tensor ¢ and the elastic deformation tensor C, in accordance with
formula (1,1), is of the same form in this model as in the case of a nondissipative incompressible isotropic
elastic medium. From considerations of thermodynamic stability, Wj =0,

The first (tensor) equation (1.2) corresponds to the kinematic relation between the reversible and irre~
versible rates of the deformations. The other two scalar relations in (1.2) are the incompressibility conditions,

The expression for the tensor of irreversible deformation rates ep, defined by formula (1.3), in accor-
dance with the concept of a nonlinear Maxwellian liquid, depends only on the reversible deformation, the tensor
C. This expression has the following properties [5]:

ep = —gb -+ 2CHP/IC, P = (po/Phy) 1 — exp( —(B/uo)W,)k; (1.6)
HepH—>O, €] = o0 (||AII2=spA2). 1.7

The relation (1.6) means that there exists a nonequilibrium potential y, dependent only on the elastic
potential Wy (1.4), which is symmetric with respect to the arguments I, I,; the scalar quantity q is a Lagran-
gian multiplier found from the incompressibility condition spep = 0 (1.3).

The property (1.7) of formula (1.3) corresponds to the assumption, advanced in [5], that for sufficiently
large reversible deformations there is a loss of fluidity in the system owing to the intensive growth of the
characteristic scalar relaxation time of the system as a result of the orientation of the macromolecules. As
can be seen from (1.5), D —~0 as ||C || = w, i.e., all the rheological relations are transformed into relations
for a nonlinearly elastic medium, .

Lastly, an important property of formula (1.3) for ey, is the anisotropic relation between o and ep for
finite reversible deformations C (so-called forced anisotropy), which describes the processes of orientation
taking place during intensive flow of polymer liquids. Forced anisotropy (of this type) manifests itself not only
in the viscous and relaxation properties of flowing polymer systems, but also in the phenomena of heat conduc-
tion, diffusion, polarizability, etc.

In the present study we shall make use of the simplest elastic potential of the classical statistical theory
of high elasticity [6]:

W o= ug( I, —3), o ~ poRT /1, 1.8)

where R is the gas constant; p, is the average molecular weight of the chain segment between two joints. In
this case

Wy =g Wo=0; W, = (/201 + I, —6); W1 = W = po/2. 1.9

Thus, the model considered above describes the nonlinear viscoelastic effects caused by the existence
of enormous reversible deformations in flowing polymer systems. In the model, qualitative account is taken
of considerations involving the structure of flowing polymers as a fluctuating-net structure; the loss of fluidity
is treated as a relaxation transition of the polymer system into a highly elastic state,

The relations (1.1)-(1.3) (in the isothermal formulation considered below) contain three material con~
stants: Ax (T), uo(T), 8. The parameters A and g of the liquid are expressed linearly in terms of the maxi-
mum Newtonian viscosity 7y and the relaxation time 6,:

Ml T) = 20{T); 2p, = 1o/, (1.10)

The numerical parameter B (0 < B < 1) characterizes the flexibility of the macromolecules, increasing
as their rigidity increases, and determines the essentially nonlinear viscoelastic properties of the material,

A gystem of equations more complicated than the system (1.1)-(1.3) was used in [7, 8] for describing the
nonlinear properties of flowing polymers under simple shear for reversible deformations which are not very
large (8 « 1) far from the transition to the highly elastic state; the results were found to be in good agreement
with stationary and nonstationary shear experiments both for tangential and for normal stress, We shall con-
sider below the behavior of a polymer liquid for finite values of 8, concentrating our attention on the transition
from the fluid to the highly elastic state.
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Fig, 1

§2, Weconsider the case of simple shear, The kinematic matrices have the form
. /01 0 ./ 010
e=y2{1 0 O m=v/2(~1 0 0f
0 00 . 0 0 0
0

Cn Cyp Cyp —Cpp O
C= Cin Cya OF e — C1 Cu Op
0 0 1 . 0 0 1,

where y = +(t) is the rate of deformation (these were determined on the basis of adhesion conditions).

2.1)

From (2.1) we have I; =I, =1 + Cy4 + Cy. The incompressibility condition for irreversible deformations
detC = 1, on the basis of (2.1}, can be written in the form

CixCap = 1+ Cha.

Making use of (1.8)-(1.10) and substituting (2.1) and (1.3) into the tensor relation (1.2), we obtain [r =t/
90’ F(T) - 90’.)’(13)]

Tt (Chi Ch— 1) e < 4rCy;
20, % 04, (G- Ch- 1) ™ — 20 (1 £ Cha); 2.2)

Coa=CT' (1 -2 Ch), w-=Wip=-Cyy+ Co — 2.

The dimensionless tangential stress and the two normal-stress differences have the form

O3 -— Oog
2

Oz — Ous
2pa

v E. [ ¥ ’ o
0y = =0y —Chy — 0= 21— Chy; opa= 12:012-

The dimensionless ‘dissipative function is given by the expression

2 _ 2 2402
D 2P0 (c¢h—ci—1) —45116-510
Ho 2ch '

From this point on we shall omit the primes after the variables, We consider two fundamental problems, The
first is the problem of the establishment of a stationary flow regime for 1 = const from a state of rest with the
initial conditions )

Cili-o = 1; Cialt=o = 0. (2.3)
The second is the problem of relaxation of the stresses (I'= 0 when t > tg)
Culimt, = C11,0; Cializrg= Ciz0 (C11,0>>0, Ciz0>0).

Before considering the nonstationary solutions of the system (2.2), we shall consider its étationary solu-
tion, which can be conveniently represented in the form
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From (2.4) it follows that the parameter x = ng varies in the interval [0, 1] 2nd the functions giving the
stationary tangential and normal stresses in terms of I'’ will be two-valued and will exist when 0 < I'¥ < T
where I'y, (8) = max ' (x, B) from (2.4).

Figures 12 and 1b show, respectively, the curves of 022(1‘0), c’?(ro), calculated for a number of values of
B 1) 0.1; 2) 0.5; 3) 1.0] according to the formulas in (2.4).

Let us consider the question of the stability of the stationary solution (2.4) of the system of equations
(2.2) with respect to small perturbations, We set

-0 %t 0 Xt
Cii:-Cir-l-ye™; Crp=Ci2+ 20~

Substituing these equations into the equations (2.2), which are linear for small perturbations, we obtain
a system of linear homogeneous equations for y and z. Setting the determinant of this system equal to zero,
we obtain the characteristic equation for the rate of growth of the perturbations y, the solution of which can
be represented in the form

ebuy o = — (/Y T—=2)+B2/(1—a?) I (z/V 1 — WV 21 + P —1), (2.5)
where x is found from (2.4) (0 < x< 1) and is a dimensionless tangential stress,

It follows from (2.5) that for 0 < x < (1 + %)1/? the singular point of the system (2.2) is a stable focus;
for (L + gH™Y2 < x < x«(B) it is a stable node; for x*(8) < x < 1 it is a saddle. Here the quantity x«(8) is the
positive root of the equation

(1 — ) (1 + 2%) = 4pal. (2.6)

We can convince ourselves that to the value of x« from (2.6) there corresponds a maximum of x, B) =
I'm(3) from (2.4). Thus, we have shown that the two-value functions 0?2 I, C?l T'), have a region of stability
corresponding to the lower branches of these curves; the upper branches of the curves are unstable, As the
constant parameter I' increases for a fixed g, the nonstationary curves oy;(r), 0y(7) will assume a steady
state with oscillations which disappear in the region near I'y,(8). For I'> Ty, there is no stationary regime
of flow, In this region of the values of the parameter I', with the adhesion conditions preserved, the stresses
increase beyond all bounds as the dimensionless~time variable T increases, and for large values the following
asymptotic equations hold:

C, =T Cpymt + 128 (v 1), (2.7
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which corresponds to a purely elastic deformation regime in the present conditions, i.e., to the case of loss of
fluidity by the system,

A numerical solution of the system (2.2) with initial conditions (2.3) showed, however, that unlike the
above linear-stability conditions, the solution of this problem is unstable and takes on the asymptotic behavior
(2.7) for large values of 7if I« (8) < I'’ < Ty, (B), where I'«(3)is determined from the nonlinear instability of
the problem as a whole, Writing Cyy= v, Cy = u, we can write the system (2.2) in the phase plane u, v:

v _ o Alu—Twt i~ b exp{—Pr v —1)2 4 w2} D (up) (2.8)
du AT (-+u)—u (w2 Dexp{—Pr (v —1)2 + a?]} = @2l v)

The phase portrait of the system (2.2) is shown qualitatively in Fig, 2. The closed curve &, = 0 corre-
sponds to the vanishing of the denominator, and the curve &; = 0 corresponds to the vanishing of the numerator
on the right side of Eq. (2.8); their points of intersection are stationary points of the system, A and B, We con-
sider the case when the point A is a stable focus and the point B is a saddle. The arrows show the wings of the
saddle, In the present case the unstable wing BA of the saddle B is a regular trajectory in a neighborhood of
the stationary point A, The stable wings GB and DB of the saddle point B, like the unstable wing BF, go out to
infinity, The region of global stability (£.) is situated to the left of the neutral curve GBDE(C), and the region of
global instability (Z,) is to the right of this curve,

If the point M (0, 1) € £~ (which corresponds to the curve of neutral stability GBDE), then the solution of.
the problem (2.8) is stable, If M € X, {which corresponds to the curve GBDC), then the solution of the Cauchy
problem for Eq. (2.8) is unsiable irrespective of the stability of the stationary point A, As can be shown by
numevrical analysis, when the parameter T increases, we observe a transition from the situation in which the
initial point M is contained in the region of stability to a situation in which it passes into the region of insta~ -
bility; as the parameter I increases (for fixed §), the singular points A and B come closer to each other, For
every 3 there exists a critical value 4 (8), when the neutral curve intersects the point M (0, 1), Figure 3 shows
'+(f) in curve 1 and ', (8) in curve 2. For small values of 8 the deviation of I'x(f) from Iy (8) may be consid-
erable.

Considerations involving the nonstationary solution of the system (2.2) with the conditions I'= const (' s
I'Jyieldthe curves of Fig, 4, obtained by numerical integration, In Figs, 4aand 4b we see, respectively, o (7)
for g = 0.1 (I'x = 0.981) and ¢y(7) for =1 (I'x = 0.618). Curve 1 corresponds to I'= I's/2; curve 2,t0T" = T'x;
and curve 3, to I' = 1,2 T, . The left branches of these curves correspond to loading of an elastic liquid from a
state of rest with I" = const; the right (descending} branches correspond to relaxation from a stationary regime
with I" < T*a

Thus, the question of loss of fluidity of an elastic liquid is related to the existence of a stationary regime
of flow from the unperturbed state, For I'< I'x{(f) a stationary regime exists. The absence of a stationary
regime for T' > Ix(B), with passage to elastic asymptotic behavior (2.7), is treated as loss of fluidity in the sys-
tem or transition inco the highly elastic state, The behavior of the elastic liquid near the transition to the highly
elastic state depends substantially on the parameter g, which in [5] w..s given the physical meaning of the param-
eter of flexibility of the macromolecules: § «1 means flexible macromolecules and 8 ¢ 1 means rigid macro-
molecules,

For 8 ~ 1 in the region of the fluid state there is nc accumulation of large reversible deformations in the
material, Therefore, the behavior of the elastic liquid, determined from the variation of oy (T) when T = const <
Tsx & T'yy (1), as is shown by the numerical solution of the system (2.2), is practically identical with the linear
behavior, The normal stresses as I'— I'x increase sharply, but there are no maxima in the prestationary
stage of deformation in this case, This is exactly the behavior of polymers with narrow MWD that was observed
in [3].
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When B <1, there may be large reversible deformations in the elastic liquid before the transition to the
highly elastic state; as a result of this, for I" = const < I'x we observe the entire complex of nonlinear visco-
elastic properties described in [7, 8]. For I'> I'x(8) and 7 > 1 the solution of the system (2.2) is asymptoti-
cally described by the formulas (2.7) even for 8 « 1, It should be noted that while for T" < T'x (3 «1) the behavior
of the system is determined essentially by geometric nonlinearities (as a result of which, for example, the
effective viscosity for stationary shear decreases as I increases), for I ¢ T, there is a sharp increase in the
viscosity owing to orientation, notwithstanding the disorienting rotation of particles when shear takes place.

For I' 3 T'x the orientational phenomena may lead to secondary effects: the formation of crystalline
or strongly ordered amorphous regions, depending on the type of polymer. These and other phenomena have
been observed experimentally when intensive flow of polymer melts took place in capillaries [9]. When the
mechanical effect becomes even more intensive, there may be other phenomena characteristic of solids: cracks
in the polymer melt, separation of the polymer from the wall, and intensive slippage near the wall, accompanied
by oscillations, Apparently, this set of phenomena has been grouped in the literature under the general name of
destruction of a melt [1].

It should also be noted that for ' > I'sx the description of the shear motion of concentrated polymer liquids
is made more complicated by the little-investigated problem of the character of the interaction between the
polymer and the wall, ‘

83, Letus consider the case of uniform single-axis tension. The kinematic matrices and the invariants
of the tensor C have the form [y = %(t) is the longitudinal rate of deformation]

e 0 0
e=y{0 —1/2 0 ); @ =~ 0;
0 0 —1/2,

120 0 W00
C:~=(o Yt I P VR ( 0 a 0F 3.1)
0 0 i 0 0 2

I, = spC = 22 -+ 241y I, = spC=1 = 2L -+ A=2 (A > 1).

Making use of (1.8), (1.9), and (3.1), we obtain from the kinematic formulas (1.2) and (1.3) a scalar equa-
tion for the variation of A(r):

Sdh L @D oxpf B (om0 (2 4 Ol 6T () (r 10, T v0,). (3.2)
v (ot Y v

Making use of the dynamic condition on the lateral surface of a cylindrical rod (we are considering the
inertia~free formulation of the problem), we obtain an expression for the total dimensionless axial stress in a
cross section of the specimen

6 = (0, — p)/2p = A — AL, (3.3)
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Formula (3.3) agrees with the analogous formula obtained in the linear theory of rubber elasticity [8].

For Eq, (3.2) we consider two deformation regimes analogous to simple shear: transition to stationary
longitudinal flow with I' = const from a state of rest with A(0) = 1 and relaxation with A(Tp) = A,.

A stationary solution of (3.2) exists only for I' < T'% (3) and has the same properties as are found in sim-
ple shear, Here I'%,(p) is the critical value of the longitudinal rate of deformation such that for T' < I'% ()
there is stationary flow, while for T' > T%(3) there is no stationary flow, It follows from (3,2) that the variation
of I'% (8) is determined as max % B) where T(x B) = [(A2 —1)(A2 + A +1)/6Xexp { ~(BAHG -1 +4a + )},

The stationary curves for o(r) are shown in Fig, 5a; the upper branches of these curves, shown in dashed
form, are unstable, The critical values of the longitudinal rate of deformation T are less than the critical
values of the rate of deformation for simple shear for the same material; this means that for simple tension
we have the most optimal conditions of orientation, not accompanied {as in simple shear) by -the disorienting
influence of the rotation of the particles of the material,

For T > I' (I' = const) and T > 1 we obtain from (3.2) the asymptotic formulas

A = exp (I'1); o & exp (2T™),

which correspond to a pure elastic regime of deformation after loss of fluidity in the system,

The nonstationary curves for o(7), corresponding to transition to steady-state flow and relaxation with
steady-state flow (I' < I (8)), and the curves of ¢(1) for I > I‘?k (B) are shown in Figs, 5b and 5c (5b corre-
spondstof= 0,1; 5¢c to 8 = 1), It is interesting to note that, just as for the ¢ ase of simple shear, for 8 =1 we
observe a practically linear behavior of the elastic liquidup to T' = I‘?k , which was observed in experimental
studies on single-axis tension [2] carried out on polymers with narrow MWD, For T' > T'%(3) the rapid increase
of stresses with respect to time must lead to failure of the specimen by a mechanism characteristic of vulca-
nized rubbers,
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