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THEORETICAL DESCRIPTION OF THE PHENOMENON OF 

LOSS OF FLUIDITY IN POLYMER LIQUIDS SUBJECTED TO 

INTENSIVE DEFORMATION 

Ao Io L e o n o v ,  ]~o Kho L i p k i n a ,  UDC 532.5:532.135 
a n d  A o N .  P r o k u n i n  

P o l y m e r  liquids display a number  of p rope r t i e s  c h a r a c t e r i s t i c  of solids:  s l ippage along the 
wall, the appearance  of c r acks  in the ma te r i a l  during flow, b r i t t l e  f r a c t u r e  under  tension, etc .  
The combination of these phenomena encountered in the flow of p o l y m e r s  through cap i l l a r i e s ,  
accompanied by a number  of other  effects  (osci l lat ions and waves on the su r face  of a jet  e m e r g -  
ing f r o m  a capi l la ry ,  c rys ta l l i za t ion  of p o l y m e r s  in a capi l la ry ,  etc.) ,  has  been r e f e r r e d  to in 
the l i t e r a tu r e  as "des t ruc t ion  of mel t . "  The bibl iography devoted to this question,  which is i m -  
por tan t  for  many  p o l y m e r - p r o c e s s i n g  methods ,  is  ve ry  extensive  (see,  f o r  example ,  [1]). The 
behav ior  of p o l y m e r  liquids has been observed  recent ly  f o r  me l t s  of p o l y m e r s  with a n a r r o w  
molecu la r -we igh t  dis t r ibut ion (MWD) [2, 3] for  conventional types of deformat ion .  In [4] the 
hardening effect  was studied for  the case  of the ext rac t ion  of polyoxyethylene f rom a tank by 
means  of a rota t ing d rum.  The length of the liquid jets  s o  obtained was as much as half  a 
mete r~  In the p re sen t  study we p ropose  a theoret ica l  descr ip t ion  of the above-ment ioned ef -  
fects  for  two of the si tuat ions m o s t  often found in p rac t ice :  s imple  shear  and s imple  tension. 

w A t h e o r e t i c a l d e s e r i p t i o n  of the phenomenon of loss  of fluidity in po lymer  liquids sad the i r  t ransi t ion 
to a highly e las t ic  s ta te  will be  cons idered  in the s imp le s t  t h r ee -cons t an t  nonl inear  model  of an d a s t o p l a s t i c  
medium of Maxwell ian type, p roposed  in [5], 

= --p8 ~- 2CW 1 = 2C-~II~ (II'j :-: c)W/~Ij); (1.1) 

Cv --Ce --eC-~-2C%(C) : : 0 .  spe-  0. tletC:-: 1: (1.2) 
%) =.: (2.2..(T))exp{--(~,'t~o)W~}l(C --5T,/3)W~.j - - ( C  -~ -- 5 [~/3) W.~,~I; (1.3) 

I~ ::= spC. [e -= spC '~, I.V : Po/(T, I~. /~), 211"~ = IV(Y,, (.,_) :- W([.,, /,); (lo4) 

D = ~ 4  exp I--  __l~ IV~}((I~I., --  9) (IV~IV~ ., -:- I,I ~tI'~.0 -{- 2 ( I ~ '  " -- 3I . , )W,W~, - I -2 ( I~  -- 3/,) W.,W~ .,}, (1.5) 
, [ I , I  . . . . . .  . , - , -  

w h e r e  C v = (a /a t  + v a a / a x a ) C  + o~C -Cwo 

Here  we give the rheological  equations of the model  (1.1)-(1.3) for  an i ncompres s ib l e  liquid in a C a r t e -  
s i ancoord ina te  sys t em;  a is  the s t r e s s  tensor;  p is  the i so t rop ic  p r e s s u r e ;  e is the t ensor  of deformat ion  ra tes ;  

i s  the vor tex  tensor ;  the s y m m e t r i c  pos i t ive-def in i te  t ensor  C r e p r e s e n t s  the e las t ic  deformat ion  (Finger 
measure )  accumulated during the motion of the e las t ic  liquid; ep  is  the tensor  of the i r r e v e r s i b l e  ra te  of de-  
format ion;  5 is the unit tensor ;  I t, 12 are  independent var ian ts  of the t enso r  C; f is the specif ic  f ree  eriergy; 
W is  the elast ic  potential;  D is the d iss ipa t ion  function; C V is the Jaumann  der iva t ive  of the t ensor  C with 
r e spec t  to t ime; and T is  the t e m p e r a t u r e .  
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The connection between the s t r e s s  tensor  a and the e l a s t i cde fo rmat ion  tensor  C, in accordance with 
formula  (1.1), is of the same form in this model as in the case of a nondissipative incompress ib le  isotropic 
elastic medium. F r o m  considerat ions of thermodynamic stability, Wj ~_ 0~ 

The f i rs t  (tensor) equation (1�9 cor responds  to the kinematic relat ion between the revers ib le  and i r r e -  
vers ible  ra tes  of the deformations~ The other  two sca la r  relat ions in (1.2) are  the incompressibi l i ty  conditions. 

The expression for  the tensor  of i r r eve r s ib le  deformation ra tes  ep, defined by formula  (1.3), in a c c o r -  
dance with the concept of a nonlinear Maxwellian liquid, depends only on the revers ib le  deformation,  the tensor  
C. This expression has the following proper t ies  [5]: 

ev = --q6 ~,- 2C9•/0C, r = (~to/~L.) [t exp(--([~/p0)Ws) 1; (1o6) 
[[epl[ --+ 0, liE[[--+ co ([[A[[ 2 = spA2). (1o7) 

The relation (1.6) means that there exists a nonequilibrium potential ~, dependent only on the elast ic 
potential W s (1.4), whieh is symmet r i c  with respec t  to the arguments Ii, I2; the sca l a r  quantity q is a Lagran-  
gian mult ipl ier  found from the incompressibi l i ty  condition spep = 0 (1~ 

The proper ty  (lo7) of formula  (1o3) corresponds  to the assumption, advanced in [5], that for  suffieiently 
large revers ib le  deformations there is a loss of fluidity in the system owing to the intensive growth of the 
eharaeter is t ie  sca la r  relaxation time of the sys tem as a result  of the orientation of the macromoleeules .  As 
can be seen f rom (1~ D - - 0  as [[ C [I ~ oo, ice~ all the rheologieal  relat ions are t ransformed into relations 
for a nonlinearly elast ie medium. 

Lastly,  an important  proper ty  of formula  (1o3) for  e p i s  the anisotropie relation between cr and ep for  
finite revers ib le  deformations C (so-called forced anisotropy), which descr ibes  the p rocesses  of orientation 
taking plaee during intensive flow of polymer  liquids~ Foreed anisotropy (of this type) manifests  i tself  not only 
in the viscous and re laxa t ion  proper t i es  of flowing polymer  sys tems,  but also in the phenomena of heat eondue- 
tion, diffusion, polarizabil i ty,  ere~ 

In the present  study we shall make use of the s implest  elast ic potential of the c lass ica l  stat ist ical  theory  
of high elast ici ty [6]: 

iV = po( T)( I~ - -  3), ~o ~ poRT~pc, (1.8) 

where R is the gas constant; #c is the average molecular  weight of the chain segment between two joints. In 
this case 

W1 -- ~0; W2 = 0; Iu =~ (po/2)(I1 q- I~ --6); W~,I -- IVy,2 = po/2. (1.9) 

Thus, the model considered above descr ibes  the nonlinear viscoelast ic  effects caused by the existence 
of e n o r m o u s  revers ib le  deformations in flowing polymer  sys tems .  In the model,  qualitative account is taken 
of considerat ions involving the s t ruc ture  of flowing polymers  as a f luctuating-net  s t ructure;  the loss of fluidity 
is treated as a relaxation transit ion of the polymer  sys tem into a highly elast ic state�9 

The relations (1.1)-(1.3) (in the i sothermal  formulation considered below) contain three mater ia l  con- 
stants:  )~, (T), #0(T), ft. The pa ramete r s  ~ .  and ~0 of the liquid are expressed l inearly in t e rms  of the maxi-  
mum Newtonian viscosi ty 70 and the relaxation time 00: 

k.(T) -- 2q0(T); 2p0 -- ~10/00. (I�9 

The numerical parameter fi (0 < fi < 1) characterizes the flexibility of the macromolecules, increasing 
as their rigidity increases, and determines the essentially nonlinear viscoelastic properties of the material. 

A system of equations more complicated than the system (1.1)-(1.3) was used in [7, 8] for describing the 
nonlinear properties of flowing polymers under simple shear for reversible deformations which are not very 
large {fl <<I) far from the transition to the highly elastic state; the results were found to be in good agreement 
~4th stationary and nonstationary shear experiments both for tangential and for normal stress�9 We shall con- 
sider below the behavior of a polymer liquid for finite values of fl, concentrating our attention on the transition 
from the fluid to the highly elastic state. 
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w We c o u s i d e r  the case  of s i m p l e  s h e a r .  The k i ne ma t i c  m a t r i c e s  have the f o r m  

e = ~ ? / 2  0 ; t o =  /2  _ t  0 ; 

0 ,, 0 0 

tc 2-  2i) 0 . 0 0 , 

(2.1) 

where  Y = y(t) is  the r a t e  of d e f o r m a t i o n  (these were  d e t e r m i n e d  on the b a s i s  of adhes ion  condi t ions ) .  

F r o m  (2.1) we have I t = I 2 = 1 + Cli + C22. The i n c o m p r e s s i b i l i t y  condi t ion for i r r e v e r s i b l e  d e f o r m a t i o n s  
detC = 1, on the b a s i s  of (2.1), can  be wr i t t en  in  the fo rm 

CllC22 I -~ Cl2. 

Making use  of (1.8)-(1.10) and subs t i t u t i ng  (2.1) and (lo3) in to  the t e n s o r  r e l a t i on  (1.2), we obta in  ['r = t /  

00, F('r) - 00~(t)] 

d C N  ~ , 2 
-;- C t o  2 ~ -i- (Oh --  t) e -+w : : 4 r c , ;  

~ d C i .  2 
' -:- cr.:  + 2 r 0  = z c l l  - ~  - ~  C , . . ( C ~ l  ' ~ = 

C . , , = C ~ ' ( t  ?C~o), w : W / p : : C n + C 2 ~ - - 2 .  

(2.2) 

The d i m e n s i o n l e s s  t angen t ia l  s t r e s s  and the two n o r m a l - s t r e s s  d i f f e rences  have the fo rm 

The d i m e n s i o n l e s s  d i s s i p a t i v e  funct ion  is  g iven by the e x p r e s s i o n  

_ . ~ _ C ~ 2 _ l ) - _ 4 C ~ l e _ P W "  D' 2/)0. (Ch "" ~ '~ 
~o 2C2i 

F r o m  this  po in t  on we sha l l  omi t  the p r i m e s  af ter  the v a r i a b l e s .  We c o n s i d e r  two fundamen ta l  p r o b l e m s .  The 
f i r s t  i s  the p r o b l e m  of the e s t a b l i s h m e n t  of a s t a t i o n a r y  flow r e g i m e  for  F = cons t  f r o m  a s ta te  of r e s t  with the 
i n i t i a l  cond i t ions  

Cnh:.0 = l;-Cldt=0 = 0. (2.3) 

The second is the p r o b l e m  of r e l axa t i on  of the s t r e s s e s  (F = 0 when t > to) 

C,lh=t. = C~,0; Ct~_b=~o~= C~2,0 (C~t,0~0, C~2,0~0). 

Before c o n s i d e r i n g  the n o n s t a t i o n a r y  so lu t ions  of the s y s t e m  (2.2), we sha l l  c o n s i d e r  i t s  s t a t i o n a r y  so lu -  
t ion,  which can  be c o n v e n i e n t l y  r e p r e s e n t e d  in  the f o r m  
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x | " 

o ~ _  2 ~  o ~ ~___x.  
l f ~ _  ~ ; - -  ~2 = i~-k 1 ; t - ~ ;  

(2.4) 

F r o m  (2.4) i t  fol lows that the p a r a m e t e r  x -= C~2 v a r i e s  in the in te rva l  [0, 1] sad the funct ions  giving the 
s t a t i ona ry  tangent ia l  and n o r m a l  s t r e s s e s  in t e r m s  of F ~ will be two-va lued  and will ex i s t  when 0 < F ~ -< F m,  
where  r m ~ )  = ma x  F ~ (x, fl) f r o m  (2A). 

F i g u r e s  l a  and lb  show, r e s p e c t i v e l y ,  the c u r v e s  of  (r[2(F0), q~ ca lcu la ted  f o r  a n u m b e r  of values of 
fl [1) 0ol; 2) 0.5; 3) 1.0] accord ing  to the f o r m u l a s  in (2.4). 

Let  us  cons ide r  the ques t ion  of  the s tab i l i ty  of  the s t a t i o n a r y  solut ion (2.4) of the s y s t e m  of equat ions  
(2.2) with r e s p e c t  to smal l  p e r t u r b a t i o n s . . W e  se t  

(} I 
C n :  : C~ "]- Ye:r C12 = C12 ~ ze xt- 

Substi t t t ing these  equat ions  into the equat ions  (2.2), which a r e  l inea r  f o r  sma l l  p e r t u r b a t i o n s ,  we obtain 
a s y s t e m  of l i nea r  homogeneous  equat ions  f o r  y and z.  Setting the d e t e r m i n a n t  of  this s y s t e m  equal  to z e r o ,  
we obtain the c h a r a c t e r i s t i c  equat ion f o r  the ra te  of  g rowth  of the p e r t u r b a t i o n s  )/, the solut ion of which can 
be r e p r e s e n t e d  in the f o r m  

e~.'X,.2 = - - ( 1 / 1 / - ~ ) +  l~x21(i---x ~) ]--(x/V-~-~-Z)l/x~(i + ~") - i), (2.5) 

where  x i s  found f r o m  (2.4) (0 < x < 1) and is a d i m e n s i o n l e s s  tangent ia l  s t r e s s .  

It fol lows f r o m  (2.5) that f o r  0 < x < (1 + 132)1/2 the s ingu la r  point  of the s y s t e m  (2.2) is a s table  focus;  
fo r  (1 + 132)-I/2 < x < x , ~ )  it is  a s table  node; f o r  x.(fi) < x < 1 it is a sadd le .  H e r e  the quant i ty  x.(fl) is the 
pos i t ive  r o o t  of the equat ion 

(1 - x. ~) (1 + x~) = 4V-x~. (2.G) 

We can convince  o u r s e l v e s  that to the value  of  x ,  f r o m  (2.6) there  c o r r e s p o n d s  a m a x i m u m  of F~ 13) = 
Fm(fl) f r o m  (2.4). Thus ,  we have shown that the two-va lue  funct ions  C02(F), C~ have  a reg ion  of s tab i l i ty  
c o r r e s p o n d i n g  to the lower  b r a n c h e s  of these  cu rves ;  the upper  b r a n c h e s  of  the c u r v e s  a r e  uns tab le .  As the 
cons tan t  p a r a m e t e r  F i n c r e a s e s  fo r  a f ixed 13, the nons ta t ionaxy  cu rves  cr12(~- ), al('r ) will  a s s u m e  a s teady  
s ta te  with o sc i l l a t i ons  which d i s a p p e a r  in the reg ion  n e a r  Fm(fl). F o r  F > Fm there  is no s t a t i ona ry  r e g i m e  
of f low. In this r eg ion  of  the va lues  of the p a r a m e t e r  F,  with the adhesion cbndi t ions  p r e s e r v e d ,  the s t r e s s e s  
i n c r e a s e  beyond all bounds as the d i m e n s i o n l e s s - t i m e  var iab le  "r i n c r e a s e s ,  and fo r  l a rge  va lues  the following 
a sympto t i c  equat ions  hold: 

C12 ~F~; C11~I -~ I~2T 2 (%" ~ i), (2.7) 
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which corresponds  to a purely elast ic  deformation regime in the p resen t  conditions, i .e. ,  to the case of loss  of 
fluidity by the sys t em.  

A numerical  solution of the sys tem (2.2) with initial conditions (2.3) showed, however ,  that unlike the 
above l inear-s tabi l i ty  conditions, the solution of this problem is unstable and takes on the asymptotic behavior 
(2.7) for  large values of 7 if  F* (fl) < F ~ < Fm(fl), where F.(fl)is determined f rom the nonlinear instability of 
the problem as a whole. Writing Cli -= v, C n -= u, we can write the sys tem (2.2) in the phase plane u, v: 

d_v = v  4 r u - - ( u " + v ~ - - i ) e x p { - - ~ v - - ~ I ( v - - t ) : + u ~ ] }  ._:_r (2.8) 
d ~  2 F  (1 "i- u "~) - -  u (u  S -~ v 2 + 1) e x p  { - -  ~v - ~  [(v - -  ! )  8 + u~]} - -  O.., (u ,  v)" 

The phase por t r a i t  of the sys tem (2.2) is shown qualitatively in Fig.  2. The closed curve ~2 = 0 c o r r e -  
sponds to the vanishing of the denominator ,  and the curve 4~1 = 0 cor responds  to the vanishing of the numera tor  
on the right side of Eq. (2.8); their  points of intersect ion are  s tat ionary points of the sys tem,  A and B. We con-  
s ider  the case when the point A is a stable focus and the point B is a saddle. The ar rows show the wings of the 
saddle, In the presen t  ease the unstable wing BA of the saddle B is a regular  t ra jec tory  in a neighborhood of 
the s ta t ionary point A. The stable wings GB and DB of the saddle point B, like the unstable wing BF, go out to 
infinity. The region of global stability (Z_) is situated to the left of the neutral  curve  GBDE(C), and the region of 
global instabili ty (E+) is to the right of this curve.  

If the point M (0, 1) q Z-  (which corresponds  to the curve of  neutral stability GBDE), then the solution of. 
the problem (2.8) is stable. If M ~ Z+ (which cor responds  to the curve GBDC), then the solution of the Cauchy 
problem for Eq. (2~ is unstable i r r e spec t ive  of the stabil i ty of the s ta t ionary point A. As can be shox~n by 
numerica l  analysis ,  when the p a r a m e t e r  F inc reases ,  we observe a transit ion f rom the situation in which the 
initial point M is contained in the region of stabil i ty to a situation in which it passes  into the region of ins ta-  
bility; as the pa r ame te r  F increases  (for fixed fi), the singular points A and B come c lose r  to each other.  For  
every  fi there exists a cr i t ical  value F,69), when the neutral curve in te rsec ts  the point M (0, 1). Figure  3 shows 
F*(fi) in curve  1 and Fm(fi) in curve 2. Fo r  small  values offl the deviation of F,(fi) f rom Fm(fi) may be ~cnsid- 
erable~ 

Considerations involving the nonstat ionary solution of the sys tem (2~ with the conditions F = const  (r  x 
F,) yield the curves  of Fig. 4, obtained by numerica l  in tegrat ion.  In Figs. 4aand4b we see, respect ively ,  ~i2(7) 
for fl = 0.1 (F ,  = 0o981) and crl(~r) fo r  fl = 1 (F,  = 0.618). Curve 1 corresponds  to F = F , /2 ;  curve 2, to F = F ,  ; 
and curve 3, to F = 1o2 F , .  The left branches of these curves  cor respond to loading of an elast ic liquid f rom a 
state of res t  with F = const; the r ight  (descending) branches correspond to relaxation f rom a s ta t ionary regime 
with F -< F , .  

Thus, the question of loss of fluidity of an elast ic  liquid is related to the existence of a s tat ionary regime 
of flow from the unperturbed state.  F o r  F<  F,(fl) a s ta t ionary regime exists~ The  absence of a s ta t ionary 
regime for  F > F,{fl), with passage to elastic asymptotic behavior  (2.7), is t reated as loss of  fluidity in the sys -  
tem or  transit ion into the highly elastic state.  The behavior of the elastic liquid near  the transit ion to the highly 
elastic state depends substantially on the pa rame te r  fi, which in [5] ~-.s given the physica  ! meaning of the pa r am-  
e te r  of flexibility of the macromolecules :  fl <<1 means flexible maeromolccules  and fi ~ 1 means rigid m a c r o -  
molecules .  

For  fl ~ 1 in the region of the fluid state there is no accumulation of large revers ib le  deformations in the 
mater ia l .  There fore ,  the behavior  of the elastic liquid, determined f rom the variation ofal2(~ ')whenF=const  < 
F* ~ rra(1),  as  is shown by the numer ica l  solution of the sys tem (2.2), is  prac t ica l ly  identical with the l inear 
behavior.  The normal  s t r e s s e s  as F ~  F ,  inc rease  sharply,  but there are no maxima in the pres ta t ionary  
stage of deformation in this case .  This is exactly the behavior  of po lymers  with nar row MWD that was observed 
in [3]. 
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When fl <<1, there may be large revers ib le  deformations in the elast ic liquid before the transi t ion to the 
highly elast ic  state; as a resul t  of this, for  F = const < F .  we observe the entire complex of nonlinear v isco-  
elastic proper t ies  descr ibed in [7, 8]. Fo r  F> F.(fi) and Ir >> 1 the solution of the sys tem (2.2) is asymptot i -  
c a l l y d e s c r i b e d b y t h e  formulas  (2.7) even for fi <<1o It should be noted that while for  F < F ,  (fl <<1) the behavior  
of the sys tem is determined essent ia l ly  by geometr ic  nonlinearit ies (as a resul t  of which, for  example, the 
effective viscosi ty for  s tat ionary shear  dec reases  as F increases ) ,  for F ~ F. there is a sharp increase  in the 
v iscos i ty  owing to orientation, notwithstanding the disorienting rotation of par t ic les  when shear  takes place.  

For  F ~ F ,  the orientational phenomena may lead to secondary  effects:  the formation of crysta l l ine  
or  s trongly ordered amorphous  regions ,  depending on the type of polymer.  These and other phenomena have 
been observed experimental ly when intensive flow of po lymer  melts  took place in capi l lar ies  [9 ]. When the 
mechanical  effect becomes even more  intensive, there may be other  phenomena charac te r i s t i c  of solids:  c racks  
in the po lymer  melt,  separat ion of the polymer  f rom the wall, and intensive slippage near  the wall, accompanied 
by oscil lat ions.  Apparently,  this set  of phenomena has been grouped in the l i te ra ture  under the general  name of 
destruction of a melt  [1]. 

It should also be noted that for F > F ,  the descript ion of the shear  motion of concentrated po lymer  liquids 
is made more  complicated by the l i t t le- invest igated problem of the cha rac t e r  of the interaction between the 
po lymer  and the wail. 

w Le tus  consider  the case  of uniform single-axis  tension. The kinematic ma t r i ces  and the invariants 
of the tensor C have the form [~/ = ~/(t) is the longitudinal rate of deformation] 

+(i o o) e . . . . .  t/2 0 ; r 0; 
0 -- t /2 

C=: ~,-' 0 ; C--~ ~ ; (3.1) 

, 0 ~.-J ~,,0 0 

11 = spC = ):-' -.  2~-~; 1.2 = ~pC -1 = 2~ -~- ~-~ (~ > t). 

Making use of (1.8), (1.9), and (3.1), we obtain from the kinematic formulas (1.2) and (1.3) a sca lar  equa- 

tion for  the variation of X('r): 

, ; d x .  .%. r (3.2) 

Making use of the dynamic condition on the lateral  surface of a cylindrical  rod (we are considering the 
iner t i a - f ree  formulation of the problem),  we obtain an exPz'ession for  the total dimensionless axial s t r e s s  in a 
c ross  section of the specimen 

a = ((~H - - p ) / 2 ~  = ~2 ~-j. (3.3) 
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Formula  (3.3) agrees  with the analogous formula  obtained in the l inear  theory of rubber  elast ici ty [6]. 

For  Eqo (3.2) we cons ider  two deformation regimes  analogous to simple shear :  transition to s tat ionary 
longitudinal flow with F = const  f rom a state of res t  with k(0) = 1 and relaxation with Afro) = k0. 

A s ta t ionary solution of (3.2) exists  only for  F < F ~ (fl) and has the same proper t ies  as are found in s im-  
ple shear .  Here  r~ is the cr i t ical  value of the longitudinal ra te  of deformation such that for F < F~ 
there is s ta t ionary flow, while for  F > F~ there is no s ta t ionary flow. It follows f rom (3.2) that the variation 
of F~ (fl) is determined as n~ax F~ ~, fi) where F ~ (~, fl) = [(h 2 - 1) (h 2 + X + 1)/6;k2]exp { - ( f iA  2) (k -- 1) 2 (~2 + 4h + 1)}. 

The s tat ionary curves  for  ~(F) are shown in Fig. 5a; the upper branches  of these curves ,  shown in dashed 
form,  are unstable.  The cr i t ical  values of the longitudinal rate of deformation F~ are less than the cr i t ical  
values of the rate of deformation for  simple shear  for  the same mater ia l ;  this means  that fo r  simple tension 
we have the most  optimal conditions of orientation, not accompanied (as in simple shear) b y t h e  disorienting 
influence of the rotation of the par t ic les  of the material~ 

For  F > F~ (F = const) and ~" >> 1 we obtain f rom (3.2) the asymptotic formulas  

~ exp (F'0; ~ .~ exp (2F~), 

which correspond to a pure elast ic reg ime of deformation after loss of fluidity in the system~ 

The nonstat ionary curves  for  cr(~), corresponding to transit ion to s teady-s ta te  flow and relaxation with 
s teady-s ta te  flow (F < F 0 (8)), and the curves  of cr0) for  F > F ~ (fl) are shown in Figs.  5b and 5c (Sb c o r r e -  
spondstof l=  0ol; 5c to fi = 1). It is in teres t ing to note that, just as fo r  the c a s e  of simple shear ,  for fi = 1 we 
observe  a prac t ica l ly  l inear  behavior  of the elast ic  liquid up to F = F~ which was observed in experimental  
studies on s ingle-axis  tension [2] c a r r i e d  out on po lymers  with nar row MWD. For  F > F~ the rapid increase  
of s t r e s s e s  with respec t  to time must  lead to fai lure of the specimen by a mechanism charac te r i s t i c  of vulca-  
nized rubbers .  
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